Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We develop a general framework, called approximately-diverse dynamic programming (ADDP) that can be used to generate a collection of k≥2 maximally diverse solutions to various geometric and combinatorial optimization problems. Given an approximation factor 0≤c≤1, this framework also allows for maximizing diversity in the larger space of c-approximate solutions. We focus on two geometric problems to showcase this technique: 1. Given a polygon P, an integer k≥2 and a value c≤1, generate k maximally diverse c-nice triangulations of P. Here, a c-nice triangulation is one that is c-approximately optimal with respect to a given quality measure σ. 2. Given a planar graph G, an integer k≥2 and a value c≤1, generate k maximally diverse c-optimal Independent Sets (or, Vertex Covers). Here, an independent set S is said to be c-optimal if |S|≥c|S′| for any independent set S′ of G. Given a set of k solutions to the above problems, the diversity measure we focus on is the average distance between the solutions, where d(X,Y)=|XΔY|. For arbitrary polygons and a wide range of quality measures, we give poly(n,k) time (1−Θ(1/k))-approximation algorithms for the diverse triangulation problem. For the diverse independent set and vertex cover problems on planar graphs, we give an algorithm that runs in time 2^(O(k.δ^(−1).ϵ^(−2)).n^O(1/ϵ) and returns (1−ϵ)-approximately diverse (1−δ)c-optimal independent sets or vertex covers. Our triangulation results are the first algorithmic results on computing collections of diverse geometric objects, and our planar graph results are the first PTAS for the diverse versions of any NP-complete problem. Additionally, we also provide applications of this technique to diverse variants of other geometric problems.more » « lessFree, publicly-accessible full text available January 21, 2026
-
There has been a long-standing interest in computing diverse solutions to optimization problems. In 1995 J. Krarup [28] posed the problem of finding k-edge disjoint Hamiltonian Circuits of minimum total weight, called the peripatetic salesman problem (PSP). Since then researchers have investigated the complexity of finding diverse solutions to spanning trees, paths, vertex covers, matchings, and more. Unlike the PSP that has a constraint on the total weight of the solutions, recent work has involved finding diverse solutions that are all optimal. However, sometimes the space of exact solutions may be too small to achieve sufficient diversity. Motivated by this, we initiate the study of obtaining sufficiently-diverse, yet approximately-optimal solutions to optimization problems. Formally, given an integer k, an approximation factor c, and an instance I of an optimization problem, we aim to obtain a set of k solutions to I that a) are all c approximately-optimal for I and b) maximize the diversity of the k solutions. Finding such solutions, therefore, requires a better understanding of the global landscape of the optimization function. Given a metric on the space of solutions, and the diversity measure as the sum of pairwise distances between solutions, we first provide a general reduction to an associated budget-constrained optimization (BCO) problem, where one objective function is to optimized subject to a bound on the second objective function. We then prove that bi-approximations to the BCO can be used to give bi-approximations to the diverse approximately optimal solutions problem. As applications of our result, we present polynomial time approximation algorithms for several problems such as diverse c-approximate maximum matchings, shortest paths, global min-cut, and minimum weight bases of a matroid. The last result gives us diversec-approximate minimum spanning trees, advancing a step towards achieving diverse c-approximate TSP tours. We also explore the connection to the field of multiobjective optimization and show that the class of problems to which our result applies includes those for which the associated DUALRESTRICT problem defined by Papadimitriou and Yannakakis [35], and recently explored by Herzel et al. [26] can be solved in polynomial time.more » « less
-
Dictionaries remain the most well studied class of data structures. A dictionary supports insertions, deletions, membership queries, and usually successor, predecessor, and extract-min. In a RAM, all such operations take O(log n) time on n elements. Dictionaries are often cross-referenced as follows. Consider a set of tuples {〈ai,bi,ci…〉}. A database might include more than one dictionary on such a set, for example, one indexed on the a ‘s, another on the b‘s, and so on. Once again, in a RAM, inserting into a set of L cross-referenced dictionaries takes O(L log n) time, as does deleting. The situation is more interesting in external memory. On a Disk Access Machine (DAM), B-trees achieve O(logB N) I/Os for insertions and deletions on a single dictionary and K-element range queries take optimal O(logB N + K/B) I/Os. These bounds are also achievable by a B-tree on cross-referenced dictionaries, with a slowdown of an L factor on insertion and deletions. In recent years, both the theory and practice of external- memory dictionaries has been revolutionized by write- optimization techniques. A dictionary is write optimized if it is close to a B-tree for query time while beating B-trees on insertions. The best (and optimal) dictionaries achieve a substantially improved insertion and deletion cost of amortized I/Os on a single dictionary while maintaining optimal O(log1+B∊ N + K/B)- I/O range queries. Although write optimization still helps for insertions into cross-referenced dictionaries, its value for deletions would seem to be greatly reduced. A deletion into a cross- referenced dictionary only specifies a key a. It seems to be necessary to look up the associated values b, c … in order to delete them from the other dictionaries. This takes Ω(logB N) I/Os, well above the per-dictionary write-optimization budget of So the total deletion cost is In short, for deletions, write optimization offers an advantage over B-trees in that L multiplies a lower order term, but when L = 2, write optimization seems to offer no asymptotic advantage over B-trees. That is, no known query- optimal solution for pairs of cross-referenced dictionaries seem to beat B-trees for deletions. In this paper, we show a lower bound establishing that a pair of cross-referenced dictionaries that are optimal for range queries and that supports deletions cannot match the write optimization bound available to insert-only dictionaries. This result thus establishes a limit to the applicability of write-optimization techniques on which many new databases and file systems are based. Read More: http://epubs.siam.org/doi/10.1137/1.9781611974782.99more » « less
An official website of the United States government

Full Text Available